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1. Introduction

A partition of an integer n is a non-increasing sequence of positive integers
whose sum is n. An elementary device for studying partitions is the graphical
representation. Many combinatorial objects such as lattice paths, Ferrers graphs
etc are useful to represent partitions graphically. A lattice path P is a sequence
P = (a0, a1, a2, · · · , ak) of points ai in Zd, 0 ≤ i ≤ k. The point a0 is the start-
ing point and the point ak is the terminating point of the path P . The vectors
−−→a0a1,−−→a1a2, · · · ,−−−−→ak−1ak are called the steps of the path P . Throughout this paper,
we consider the paths in the plane integer lattice Z2.
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Figure 1:

For example, the above graph represents the lattice path P=((0,0), (1,1), (2,1),
(3,2), (4,1), (5,1)).

Long time ago, counting lattice paths with various restrictions considered. For
a detailed history see [8]. Lattice paths have applications in many fields of math-
ematics, physics and computer science. In particular, lattice paths are used as a
simple combinatorial object to interpret many q−series identities combinatorially.
In 1989, Agarwal and Bressoud [1] introduced a new class of weighted lattice paths.
They interpreted certain basic hypergeometric series with multiple indices of sum-
mation as generating functions for weighted lattice paths. In the same paper they
established a bijection between the appropriate class of lattice paths of weight n
and a set of colored partitions of n. Now, we recall the definitions of (n+ t)-color
partitions (also called the partitions with “n+ t copies of n”), weighted difference
[2] and split (n+ t)-color partitions [5].

Definition 1.1 A partition with “n+ t copies of n”, t ≥ 0, is a partition in which
a part of size n, n ≥ 0, can occur in (n+t) different colors denoted by subscripts
n1, n2, · · · , nn+t.

Note that zeros are permitted if and only if t is greater than or equal to one
and in no partition zeros are permitted to repeat.

Definition 1.2 The weighted difference of two elements mi and nj, m ≥ n, is
defined by m− n− i− j and is denoted by ((mi − nj)).

Definition 1.3 Let mi be a part in an (n + t)-color partition of a non-negative
integer ν. We split the color ‘i’into two parts-the green part and the red part and
denote them by ‘g’ and ‘r’, respectively, such that 1 ≤ g ≤ i, 0 ≤ r ≤ i − 1 and
g + r = i. An (n + t)-color partition in which each part is split in this manner is
called a split (n+ t)-color partition.

Using the ordinary partitions, color partitions, Frobenius partitions and weighted
lattice paths, many researchers interpreted several basic series identities combina-
torially (see for example [4, 7]). Recently Sachdeva and Agarwal [9] introduced a
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new combinatorial object which they called modified lattice path and they inter-
preted following two eight-order mock theta functions of Gordon and McIntosh [6]
combinatorially using modified lattice paths.

V0(q) = 1 + 2
∞∑
n=1

qn
2
(−q; q2)n
(q; q2)n

, (1.1)

V1(q) =
∞∑
n=1

qn
2
(−q; q2)n−1
(q; q2)n

, (1.2)

where (a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1), |q| < 1.
Earlier, Agarwal and Sood [5] interpreted (1.1) and (1.2) combinatorially using
split n-color partitions. Very recently, Agarwal and Sachdeva [3] interpreted the
following two basic series identities combinatorially in three different ways-using or-
dinary partitions, split (n+t)-color partitions and the modified lattice paths which
leads to new 3-way combinatorial identities:

∞∑
n=0

(−q; q2)nq2n
2

(q; q2)n(q4; q4)n
=
∞∏
n=1

(1 + q6n−3)2

(1− q6n−2)(1− q6n−4)

and

∞∑
n=0

(−q; q2)nq2n(n+1)

(q; q2)n+1(q4; q4)n
=
∞∏
n=1

(1 + q6n−1)(1 + q6n−5)

(1− q6n−2)(1− q6n−4)
.

In this paper, we consider the following two q−series:

∞∑
n=0

qkn
2
(−ql; q2l)n

(qp; q2p)n(qt; qt)n
(1.3)

and
∞∑
n=0

qkn
2+rn(−ql; q2l)n

(qp; q2p)n+1(qt; qt)n
, (1.4)

where k, l, p, r and t be any positive integers with t ≥ 2. We shall prove that (1.3)
and (1.4) are the generating functions of three different combinatorial objects- a
split (n+t)-color partition function, R-weighted lattice path function and modified
lattice path function. This leads to two new 3-way combinatorial identities which
generalize the results due to Agarwal and Sachdeva [3].
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Figure 2:

2. R-weighted lattice paths
In this section using weighted lattice paths [1], we introduce a new class of lat-

tice paths called R-weighted lattice paths. For definitions of peak, valley, mountain
and plain, we refer to [1].
We also need the following terminologies to describe R-weighted lattice paths.
Vertical line: It is a line from (a, b) to (a, b+ k) allowed only on the peaks, k ≥ 0.
Peak with head : It is a peak and there is a vertical line of finite length starting
from peak and lying above the peak. Note that vertical lines allowed only on peaks
except peaks on y-axis.
Peak without head is just a peak and its weight is its x-coordinate and weight of
a peak with head is the sum of its x-coordinate and height of its head.

Definition 2.1 R-weighted Lattice path: It is a weighted lattice path wherein ver-
tical lines of finite length (length may be zero) lying above the peaks and one is not
allowed to walk on head of the peaks.

Weight of R-weighted lattice path is the sum of weights of its peaks with head
or without head.

In the Figure 2, there are three peaks of height one, one peak of height two and
there are two valleys of height zero. Length of the first head is two and so weight
of first peak with head is three. Similarly, weights of second, third and forth peak
with head is three, seven and eleven respectively. The weight of this R-weighted
lattice path is 3 + 3 + 7 + 11 = 24.

3. Main results

In section, we state the main results of this paper.

Theorem 3.1 Let k, l, p and t be any positive integers such that t ≥ 2. Let
Em(k, l, p, t) denote the number of R-weighted Lattice paths of weight m which start
from (0, 0) such that each peak of height ≡ k (mod p), have no valley above height
0, length of the plain if any in the path is ≡ 0 (mod t) and height of ith head is
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either 0, l, · · · , (2i− 3)l or (2i− 1)l. Then

∞∑
m=0

Em(k, l, p, t)qm =
∞∑
n=0

qkn
2
(−ql; q2l)n

(qp; q2p)n(qt; qt)n
.

Theorem 3.2 Let k, l, r, p and t be any positive integers such that t ≥ 2. Let
Fm(k, l, p, r, t) denote the number of R-weighted Lattice paths of weight m which
start from (0, r) such that the height of first peak is ≥ r and if any other peak is
of height ≡ k (mod p), have no valley above height 0, the lengths of the plains if
any in the path are ≡ 0 (mod t), first peak must be with head 0 height and height
of (i+ 1)th head is either 0, l, · · · , (2i− 3)l or (2i− 1)l, where 1 ≤ i ≤ n. Then

∞∑
m=0

Fm(k, l, p, r, t)qm =
∞∑
n=0

qkn
2+rn(−ql; q2l)n

(qp; q2p)n+1(qt; qt)n
.

Theorem 3.3 Let k, l and p be any positive integers and for any even t ≥ 2, let
Am(k, l, p, t) denote the number of modified lattice paths of wight m such that
1) they start from (0, 0);
2) they have no valley above hight 0;
3) the length of plains if any are ≡ 0 (mod t);
4) the height of beam is either 0 or l;
5) the height of each pillar is ≡ k (mod p).

Let Bm(k, l, p, t) denote the split n-color partitions of m such that
1) the parts and their subscripts have the same parity;
2) if ni is the smallest or the only part in the partition, then n ≡ i (mod t);
3) the weighted difference of any two consecutive parts is non-negative and ≡
0(mod t);
4) the red part is either 0 or l;
5) the green part is ≡ k (mod p).
Then for all non-negative integer m, we have

Am(k, l, p, t) = Bm(k, l, p, t) = Em(k, l, p, t).

Theorem 3.4 Let k, l, r and p be any positive integers and for any even t ≥ 2, let
Cm(k, l, p, r, t) denote the number of modified lattice paths of wight m such that
1) they start from (0, r);
2) they have no valley above hight 0;
3) the length of plains if any are ≡ 0 (mod t);
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4) the height of beam is either 0 or l;
5) the height of each pillar is ≡ k (mod p);
6) the first peak is supported by a pillar only.

Let Dm(k, l, p, r, t) denote the split n-color partitions of m such that
1) the parts and their subscripts have the same parity;
2) if ni is the smallest or the only part in the partition, then n ≡ r + i (mod t);
3) the weighted difference of any two consecutive parts is non-negative and ≡
0(mod t);
4) for some i, ii+r is a part;
5) the red part is either 0 or l;
6) the green part is ≡ k (mod p);
7) the red part of the smallest part is 0.
Then for all non-negative integer m, we have

Cm(k, l, p, r, t) = Dm(k, l, p, r, t) = Fm(k, l, p, r, t).

Theorem 3.3 and Theorem 3.4 are the generalizations of the results proved by
Agarwal and Sachdeva [5]. In fact, setting k = 2, l = p = 1, t = 4 in Theorem 3.3,
we obtain the Theorem 2.1 of [3] and setting k = 2, l = p = 1, t = 4 and r = 2 in
Theorem 3.4, we obtain the Theorem 2.2 of [3].

4. Proof of Theorem 3.1–3.4

Proof of Theorem 3.1. In
qkn

2
(−ql; q2l)n

(qp; q2p)n(qt; qt)n
, the factor qkn

2
generates the lattice

path with n peaks and height of each peak is k starting from (0, 0) and terminate

at (2nk, 0). The factor
1

(qt; qt)n
generates n non-negative multiples of t say, λ1 ≥

λ2 ≥ λ3 ≥ · · ·λn ≥ 0, which are encoded by inserting λn horizontal steps in front
of the first mountain and λi − λi+1 horizontal steps in front of the (n − i + 1)th

mountain, 1 ≤ i ≤ n− 1. The factor
1

(qp; q2p)n
generates n non-negative multiples

of (2i−1)p say, b1×p, b2×3p, b3×5p, · · · , bn× (2n−1)p. These can be encoded by
raising the height of ith peak by bn−i+1p, 1 ≤ i ≤ n. The factor (−ql; q2l)n generates
non-negative multiples of distinct (2i− 1)l say, β1 × l, β2 × 3l, · · · , βn × (2n− 1)l,
where βi ∈ {0, 1}, 1 ≤ i ≤ n. This is encoded by inserting vertical line of length
2l(βn + βn−1 + · · · + βn−i+2) + lβn−i+1 on the ith peak towards above, where 1 ≤
i ≤ n. Every lattice paths enumerated by Em(k, l, p, t) is uniquely generated in
this manner.

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to the proof of
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Theorem 3.1. We see that in this case there are two extra factors namely qrn and
(1− q(2n+1)p)−1. The factor qrn puts r south east steps: (0, r) to (1, r−1), · · · , (r−
1, 1) to (r, 0). Thus, there are n+ 1 peaks starting from (0, r) and the extra factor
(1−q(2n+1)p)−1 generates a non-negative multiple of (2n+1)p, say bn+1×p(2n+1).
This can be inserted by raising the height of the first peak by pbn+1. This completes
the proof.

Proof of Theorem 3.3. In
qkn

2
(−ql; q2l)n

(qp; q2p)n(qt; qt)n
, the factor qkn

2
generates the lattice

path with n peaks and each peak is supported by a pillar of height k starting from

(0, 0) and terminating at (2nk, 0). The factor
1

(qt; qt)n
generates n non-negative

multiples of t say, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. These can be encoded by inserting
λn horizontal steps in front of the first mountain and λi − λi+1 horizontal steps in

front of the (n− i+ 1)th mountain, 1 ≤ i ≤ n− 1. The factor
1

(qp; q2p)n
generates

n non-negative multiples of (2i− 1)p say, b1× p, b2× 3p, · · · , bn× (2n− 1)p. These
can encoded by raising the height of ith pillar by bn−i+1p, for 1 ≤ i ≤ n. The
factor (−ql; q2l)n generates non-negative multiples of distinct (2i− 1)l say, β1 × l,
β2 × 3l, · · · , βn × (2n − 1)l, where βi = 0 or 1 for 1 ≤ 1 ≤ n. This is encoded
by inserting a beam of height βn−i+1l on the ith pillar for 1 ≤ i ≤ n.Every lattice
paths enumerated by Am(k, l, p, t) is uniquely generated in this manner. Now, we
shall prove 1–1 correspondence between the modified lattice paths enumerated by
Am(k, l, p, t) and the split-n color partitions enumerated by Bm(k, l, p, t). We do
this by encoding each path as the sequence of the weights of the peaks with each
weight subscripted by the height of the respective peak considered as the height of
the supporting pillar which corresponds to the green color plus the height of the
supporting beam which corresponds to the red color. Thus if in the final graph we
denote the ith and (i+ 1)th peak by Rx and Sy (S ≥ R), respectively, then

R = (2i− 1)k + λn−i+1 + 2p(bn + bn−1 + · · ·+ bn−i+2) + pbn−i+1

+ 2l(βn + βn−1 + · · ·+ βn−i+2) + lβn−i+1,

x = k + pbn−i+1 + lβn−i+1,

S = (2i+ 1)k + λn−i + 2p(bn + bn−1 + · · ·+ bn−i+1) + pbn−i

+ 2l(βn + βn−1 + · · ·+ βn−i+1) + lβn−i,

y = k + pbn−i + lβn−i.

The weighted difference of these two parts is ((Sy − Rx)) = S − R − x − y =
λn−i − λn−i+1 which is non-negative and ≡ 0 (mod t). Note that if Rx denote the
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first peak in the modified lattice path then it will correspond to the smallest part in
the corresponding split n− color partition or to the singleton part if split n−color
partition has only one part and in both cases

R− x = λn ≡ 0 (mod t).

Further, if we look at the split n− color part Rx, we find that the parity of both
R and x is determined by k + pbn−i+1 + lβn−i+1. If k + pbn−i+1 + lβn−i+1 is even
(resp., odd), then R and x are even (resp., odd). This proves the parts and their
subscripts have the same parity. Since the height of any beam is either 0 or l,
the red part in the corresponding split n-color partition is either 0 or l.Also, since
there is no pillar with height < k, the green part in the corresponding split n−color
partition will be at least k. Since the lengths of the plains are given in terms of λi,
1 ≤ i ≤ n, which are non-negative and are multiples of t, the lengths of plain, if
any, are ≡ 0 (mod t).

To see the reverse implication, we consider the two parts of a partition enumer-
ated by Am(k, l, p, t), say, Cu and Dv. (Note that here there is no need to consider
the split subscripts). Let Q1 ≡ (C, u) and Q2 ≡ (D, v) be the corresponding peaks
in the associated lattice path.

The length of the plain between the two peaks is D − C − u − v which is the
weighted difference between the two parts Cu and Dv and is therefore non-negative
and ≡ 0 (mod t). Next, we can prove by contradiction that there cannot be any
valley above height 0.Suppose there is a valley V of height r (r > 0) between the
peaks Q1 and Q2. In this case, there is a descent of u − r from Q1 to V and an
ascent of v − r from V to Q2. This implies that D = C + (u − r) + (v − r) or
D − C − u− v = −2r. But since the weighted difference is non-negative, we have
r = 0. This completes the bijection.

Finally, Note that weight of ith peak in modified lattice path is equal to weight
of ith peak with head in R-weighted lattice path for 1 ≤ i ≤ n. So, there is a
1–1 corresponds between modified lattice paths enumerated by Am(k, l, p, t) and
R-weighted lattice paths enumerated by Em(k, l, p, t). This completes the proof.

Proof of Theorem 3.4. The proof of Theorem 3.4 is similar to the proof of
Theorem 3.3. We see that in this case there are two extra factors namely qrn

and (1 − q(2n+1)p)−1. The factor qrn puts r south east steps: (0, r) to (1, r −
1), · · · , (r − 1, 1) to (r, 0). Thus, there are m + 1 peaks starting from (0, r) and
the extra factor (1 − q(2n+1)p)−1 introduces a non-negative multiple of (2n + 1)p,
say bm+1 × p(2n + 1). This is encoded by having the first peak to grow to height
pbm+1 + r. Clearly, (pbm+1)pbm+1+r which is of the form ii+r will be the colored part
corresponding to the first peak. This completes the proof.
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